Gewinnung von Antimonselenat und Untersuchung seiner Thermostabilität

Über die Gewinnung und Thermostabilität der Chalkogenate von Antimon und Wismut, 5. Mitt.

Von

Georgi Georgiew und Zorka Bontschewa-Mladenowa

Abteilung für Anorganische Chemie, Chemisch-Technologische Hochschule Burgas, und Abteilung für Chemie und Technologie der Halbleitermaterialen, Chemisch-Technologische Hochschule Sofia-Darwenitza, Bulgarien

Mit 3 Abbildungen

(Eingegangen am 16. April 1976)

Preparation and Thermostability of the Chalkogenates of Antimony and Bismuth, V. Preparation and Thermostability of Antimony Selenate

On preparative way has been obtained antimony selenate $Sb_2(SeO_4)_3$. Its thermostability has been studied by thermal, thermo-gravimetric, phase-roentgenographic, and chemical analysis. A scheme of thermal dissociation is proposed.

Die Chalkogenate sind Vertreter einer großen Klasse anorganischer Verbindungen. Ihr thermischer Zerfall und ihre Oxydation ist ein komplizierter heterogener Prozeß, der aus einer Reihe aufeinander folgender und parallel verlaufender chemischer Umwandlungen besteht. Die Untersuchung dieser Vorgänge liefert reiches experimentelles Material für die Erforschung der Gesetzmäßigkeiten dieser Umwandlungen.

Angaben über die Gewinnung von Antimonselenat existieren nur aus den Jahren 1889 und 1890¹. Vorliegende Arbeit bildet die Fortsetzung unserer Untersuchungen zur Gewinnung und Thermostabilität der Chalkogenate von Antimon und Wismut²⁻⁵.

Zur Gewinnung des Antimonselenats verwendeten wir $\mathrm{Sb}_2\mathrm{O}_3$ p.a. und 96proz. Selensäure (spez. Gewicht = 2,035), ebenfalls p.a.

Das gewonnene $Sb_2(SeO_4)_3$ wurde chemisch und phasenröntgenographisch analysiert. Sb^{3+} wurde bromatometrisch mit Methylorange als Indikator⁶ bestimmt, Selen jodometrisch⁷ als Se⁶⁺. Die phasenröntgenographische Analyse erfolgte mittels Diffraktometer Typ TURM-61 mit

Monatshefte für Chemie, Bd. 107/6

Goniometer HZG bei $\operatorname{CuK}_{\alpha}$ -Strahlung. Das spezifische Gewicht des Antimonselenats wurde pyknometrisch in Äthanol bestimmt.

Die Thermostabilität wurde mittels eines Derivatographen von F. Paulig, I. Paulig und L. Erdey-Typ OD-102 mit Einwaagen von 0,6 bis

Abb. 1. Strichröntgenogramme. $a \operatorname{Sb}_2(\operatorname{SeO}_4)_3$, erhalten nach Methode A; $b \operatorname{Sb}_2(\operatorname{SeO}_4)_3$, erhalten nach Methode B; $c \operatorname{Produkt}$ aus $\operatorname{Sb}_2(\operatorname{SeO}_4)_3$ durch Erhitzen auf 220 °C [unseren Daten gemäß = $\operatorname{Sb}_2(\operatorname{SeO}_3)_3$]; $d \operatorname{Sb}_2(\operatorname{SeO}_3)_3$, erhalten aus Sb_2O_3 und SeO_2 bei 280 °C; $e \operatorname{Produkt}$ aus $\operatorname{Sb}_2(\operatorname{SeO}_4)_3$, erhalten durch Erhitzen bis 480 °C [unseren Daten gemäß = (SbO)_2SeO_3]; $f \operatorname{Produkt}$ aus $\operatorname{Sb}_2(\operatorname{SO}_4)_3$, erhalten durch Erhitzen bis 600 °C (unseren Daten gemäß = Sb_2O_3); $h \operatorname{Produkt}$ aus $\operatorname{Sb}_2(\operatorname{SeO}_4)_3$, erhalten durch Erhitzen 700 °C (unseren Daten gemäß = $\alpha \operatorname{-Sb}_2O_4$); $k \operatorname{Produkt}$ aus Sb_2O_3 , erhalten durch Erhitzen bis 700 °C (unseren Daten gemäß = $\alpha \operatorname{-Sb}_2O_4$); $l \alpha \operatorname{-Sb}_2O_4$ nach ¹¹

0,8 g bestimmt. Die Aufheizgeschwindigkeit betrug 5---6 °C pro Minute. Als Justiersubstanz diente geglühtes Al_2O_3 . Das Thermoelement bestand aus Platin-Platin/Rhodium.

Die Produkte der thermischen Dissoziation wurden ebenfalls chemisch und phasenröntgenographisch analysiert. Gewinnung und Untersuchung der Thermostabilität von Antimonselenat 1465

Die Bestimmung des Antimons erfolgte wie die beim Antimonselenat. Die Bestimmung von Se⁶⁺ in den Zerfallsprodukten wieder jodometrisch⁷. Se⁴⁺ wurde jodometrisch und gravimetrisch durch Reduktion mit Hydrazin zu elementarem Selen⁸ bestimmt. Die Ergebnisse der phasenröntgenographischen Analyse sind in Form von Strichdiagrammen dargestellt.

Das $Sb_2(SeO_4)_3$ erhielten wir nach zwei Methoden:

A) Durch Lösen von Sb_2O_3 in heißer konz. Selensäure.

Abb. 2. Thermogramm des Antimonselenats

B) Durch Lösen von Sb₂O₃ in 3M-H₂SeO₄ unter Thermostatieren bei 25 °C und ununterbrochenem Rühren mit einem Magnetrührwerk im Laufe von 48 Stdn. In beiden Fällen ließen wir die gewonnene Substanz noch 72 Stdn. setzen. Die mittels Glasfilter G₄ gewonnenen Kristalle wurden mit einer Mischung aus Alkohol und Äther (1:1) gewaschen und im Exsikkator über KOH getrocknet.

Nach Methode A gewonnenes $Sb(SeO_4)_3$ gab folgende Analysenwerte:

Sb gef. 36,14, 36,10, 36,65; Sb ber. 36,21. Se gef. 35,21, 35,13, 35,40; Se ber. 35,23.

Nach Methode B gewonnenes Sb(SeO₄)₃ gab folgende Zahlen:

Sb gef. 36,25, 36,32, 36,28. Se gef. 35,21, 35,13, 35,42. G. Georgiew und Zorka Bontschewa-Mladenowa:

Die Identität der nach den beiden Methoden gewonnenen Produkte wird auch phasenröntgenographisch bestätigt (Abb. 1). Das gewonnene Antimonselenat ist ein weißer kristalliner Stoff. Es ist gut in konz. $\rm H_2SO_4$ löslich.

Temp. des Zerfalls, °C	Gewichtsv ber. aus der TG-Kurve	erlust, mg ber. aus der Stöchiom.	wahr- scheinl. Formel	Anal ge (be Sb	iysen ef. er.) Se
130° C	13	11	${ m Sb}_2({ m SeO}_3)_3$	39,16 39,39 39,77 38,99	37,15 37,40 38,10 37,92
350° C			$(\mathrm{SbO})_2\mathrm{SeO}_3$	$\begin{array}{c} 60,73 \\ 60,48 \\ 60,57 \\ 60,51 \end{array}$	19,70 19,58 19,67 19,62
600° C	91	90	$\mathrm{Sb}_2\mathrm{O}_3$	83,15 83,18 83,44 83,53	
680° C			$\mathrm{Sb}_2\mathrm{O}_4$	78,60 78,98 79,29 79,19	

Tabelle 1. Ergebnisse der chemischen und thermogravimetrischen Analyseder Zerfallprobe

Ergebnisse und deren Auswertung

Das Thermogramm des Sb₂(SeO₄)₃ zeigt folgende thermische Effekte: einen großen endothermen Effekt bei 150 °C, einen großen exothermen Effekt bei 260 °C, einen doppelten endothermen Effekt bei 600 °C und einen kleinen exothermen Effekt bei 685 °C (Abb. 2).

Zwecks Aufklärung der Natur der thermischen Effekte wurde eine gewogene Menge der Substanz in einem Porzellantiegel auf eine Temperatur erhitzt, die etwas über dem entsprechenden Effekt liegt und drei Stunden bei dieser Temperatur belassen. Die so behandelte Substanz wurde chemisch und phasenröntgenographisch analysiert. Der Gewichtsverlust bei den entsprechenden thermischen Effekten wurde so außer nach der thermogravimetrischen Kurve auch nach dem Gewichtsunterschied des Tiegels mit der Probe vor und nach dem Versuch überprüft. Die Ergebnisse weisen eine sehr gute Übereinstimmung auf.

1466

Gewinnung und Untersuchung der Thermostabilität von Antimonselenat 1467

Der exotherme Effekt bei 150 °C entspricht dem Übergang von $Sb_2(SeO_4)_3$ zu $Sb_2(SeO_3)_3$. Das wird durch die Resultate der chemischen und phasenröntgenographischen Analyse bestätigt. Die Bestimmung des Antimons und Selens steht in guter Übereinstimmung mit der Formel $Sb_2(SeO_3)_3$ (Tab. 1). Auf den Röntgenogrammen dieses Produktes

Abb. 3. Thermogramme. a Sb₂(SeO₄)₃; b Sb₂(SeO₃)₃, erhalten aus Sb₂O₃ und SeO₂; c Sb₂O₃

fehlen jegliche Linien, was für das Vorliegen eines röntgenamorphen Stoffes spricht. Auch das in ² beschriebene Sb₂(SeO₃)₃ ist röntgenamorph.

Der exotherme Effekt bei 260 °C ist von keiner Gewichtsveränderung begleitet und geht auf die Umwandlung in kristallines $Sb_2(SeO_3)_3$ zurück. Die auf diese und eine etwas höhere Temperatur erhitzte Probe weist eine gute, röntgenographisch registrierte Kristallstruktur auf.

Der doppelte endotherme Effekt bei 600 °C ist auf den Zerfall des Antimonselenats zu Oxidselenat im Temperaturbereich 320—480 °C und auf den Zerfall des Oxidselenats zu Antimonoxid (Sb₂O₃) im Temperaturbereich 480—600 °C zurückzuführen. Die Bestätigung dafür liefern sowohl die chemische Analyse (Tab. 1) von Proben, die auf diese Temperatur erhitzt worden waren, als auch die Berechnung der Gewichtsveränderungen nach der thermogravimetrischen Kurve. Die Entstehung der neuen Phasen (SbO)₂SeO₃ und

α-Sb ₂ O ₄ , Lit. ¹¹		Sb ₂ (8 erhit 70	Sb ₂ (SeO ₄) ₃ , erhitzt auf 700 °C		Sb ₂ O ₃ , erhitzt auf 700 °C		α-Sb ₂ O ₄ , Lit. ¹⁰		β-Sb ₂ O ₃ , Lit. ¹²	
J	$d, \mathrm{\AA}$	J	d, Å	J	d, Å	J	$d, \mathrm{\AA}$	J	d, Å	
3	3,49			3	3,56	3	3,60			
33	3,44	32	3,42	34	$3,\!43$	35	3.445			
		30	3,204					100	3.24	
100	3,07	100	3,10	200	3.07	100	3.073	_	, 	
23	2,93	41	2,92	34	2,92	45	2,942		·	
		29	2,86					60	2,88	
17	2,65	29	2,63	25	2,64	25	2,651			
				24	2,62			58	2,640	
3	2,46	10	2,45	10	2,45	10	2,470		·	
7	2,39	21	2,39	20	2,39	17	2,404			
1	2,22	4	2,22	4	2,22	5	2,195			
		7	2,177					24	2,184	
2	1,99	3	1,98	5	1,98	5	1,998			
		6	1,96	7	1,96	5	1,971	6	1,98	
20	1,856	30	1,852	24	1,856	25	1,862			
17	1,778	32	1,775	21	1,768	20	1,781			
27	1,719	20	1,713	20	1,717	20	1,723		_	
3	1,683	5	1,687	5	1,684	5	1,679	_		
		1	1,667			~		57	1,672	
		10	1,624	9	1,624			31	1,625	
1	1,586	3	1,650	3	1,571	3	1,536			
		6	1,512	6	1,514			26	1,514	
15	1,475		1,479	11	1,477	h		_		
		12	1,461	14	1,461	11	1,469	16	1,468	
12	1,428	12	1,421	12	1,425	9	1,431		· 	
1	1,371	1	1,371	1	1,371	3	1,372			
9	1,323	7	1,316	7	1,319	7	1,325			
8	1,251	6	1,245	5	1,246			<u> </u>	~—	

Tabelle 2. Phasenanalyse — Sb_2O_4

 Sb_2O_3 wird auch röntgenographisch nachgewiesen (Abb. 1). Diese Phasen wurden übrigens im selben Temperaturbereich von einem von uns auch durch Oxydation von Sb_2Se_3 und anschließende thermische Dissoziation der erhaltenen Produkte gewonnen⁹.

Zur Bestätigung obiger Interpretation des thermischen Zerfalls der festen Phase werden Resultate der Derivatogramme von Sb₂(SeO₃)₃, Gewinnung und Untersuchung der Thermostabilität von Antimonselenat 1469

das aus Sb₂O₃ und SeO₂ in einer luftleeren zugeschmolzenen Quarzampulle synthetisiert wurde, und von Sb₂O₃ angeführt. Wie aus Abb. 3 ersichtlich ist, wiederholt die thermogravimetrische Kurve des Sb₂(SeO₃)₃ genau die thermischen Effekte des Sb₂(SeO₄)₃ nach der Umwandlung des amorphen Sb₂(SeO₃)₃ in kristallines Sb₂(SeO₃)₃.

Eine solche Kurve hatten wir auch in 2 erzielt. Das Produkt war aber leider fälschlicherweise als Sb₂O₅ angesprochen worden.

Der kleine exotherme Effekt bei 685 °C geht auf die Oxydation des Sb_2O_3 zu Sb_2O_4 zurück, was durch die Ergebnisse der thermischen, thermogravimetrischen, chemischen und phasenröntgenographischen Analyse bestätigt wird. Die thermischen Effekte der Oxydation des reinen Sb_2O_3 und die des beim Zerfall des Selenits und Selenats bei über 650 °C gewonnenen Produktes zeigen sehr ähnliche Werte.

Das bei 650 °C gewonnene Produkt wurde in orthorhombischer Syngonie als Phase α -Sb₂O₄ indiziert, was dem Mineral Servantit mit Parametern der Elementarzelle a = 5,428 Å, b = 4,79 Å, c = 11,758 Å entspricht. Diese Zahlen stimmen gut mit den Literaturangaben¹⁰ überein (Tab. 3).

Die Reflexe mit Netzebenenabständen d = 3,24 Å, 2,86 Å, 2,62 Å, 2,176 Å, 1,667 Å, 1,624 Å, 1,514 Å gehören wahrscheinlich zu der Phase β -Sb₂O₄. Ausgehend von der Intensität des Reflexes mit dem Abstand 3,24 Å, der für β -Sb₂O₄ eine Intensität von 100% aufweist, kann geschlossen werden, daß der Gehalt an α -Sb₂O₄ in dieser Phase unbedeutend ist.

Zusammenfassend läßt sich folgendes Schema der thermischen Dissoziation von Antimonselenat vorschlagen:

$$\begin{array}{c} \mathrm{Sb}_2(\mathrm{SeO}_4)_3 \ \underline{\ }^{150\ \mathrm{°C}} \ \mathrm{Sb}_2(\mathrm{SeO}_3)_3 \ \mathrm{R\ddot{o}}\text{-}\mathrm{amorph} \ \underline{\ }^{260\ \mathrm{°C}} \ \mathrm{Sb}_2(\mathrm{SeO}_3)_3 \ \mathrm{krist.} \\ \\ \underline{\ }^{320-480\ \mathrm{°C}} \ \mathrm{(SbO)}_2\mathrm{SeO}_3 \ \underline{\ }^{600\ \mathrm{°C}} \ \mathrm{Sb}_2\mathrm{O}_3 \ \underline{\ }^{685\ \mathrm{°C}} \ \alpha\text{-}\mathrm{Sb}_2\mathrm{O}_4. \end{array}$$

Literatur

- ¹ G. A. Cameron und J. Macalan, Proc. Roy. Soc. **46**, 32 (1880); Monit. scient. (4) **1889**, 1036; Chem. News **59**, 219, 232, 258, 269 (1889), zitiert nach Comprehensive treatise on inorganic and theoretical chemistry, J. Mellor.
- ² Z. Bontschewa-Mladenowa und S. Tschawdarowa, Mh. Chem. **100**, 1206 (1969).
- ³ Z. Bontschewa-Mladenowa, A. S. Pachinkin und M. Tzetzowa, Mh. Chem. 100, 1829 (1969).
- ⁴ Z. Bontschewa-Mladenowa und R. Schopowa, Mh. Chem. 100, 1834 (1969).
- ⁵ Z. Bontschewa-Mladenowa und G. Georgiew, Mh. Chem. 106, 283 (1975).
- ⁶ Н. П. Пенчев, Б. Н. Загорчев, Аналитична химия, София 1956.
- ⁷ N. A. Radew und J. G. Miers, Ind. Engng. Chem., Anal. Ed. 10, 334 (1938).

1470 G. Georgiew u. a.: Gewinnung und Untersuchung der Thermostabilität

- ⁸ W. F. Hillebrand, G. E. F. Lundel, H. A. Brighg und J. I. Hofman, Applic. and Inorganic analysis. London: 1953.
- ⁹ З. Бончева Младенова, А. С. Пашинкин, Н. Р. Дарашкевич, А. В. Новоселова, Вестник Московского Университета Химия 4, 434 (1970).
- ¹⁰ ASTM Diffraction data 11-694 (1961).
- ¹¹ Л. И. Миркин, Справочник по рентгеновскому анализу поликристаллов, Госуд. издат. физ-матем. литературы, Москва 1961.
- ¹² М. В. Вартоломеев, И. С. Хостакин, М. Н. Сетникова, В. Ф. Пмосев, Известия АН СССР, серия "Неорганические материалы" **11**, 5 (1975).

Korrespondenz und Sonderdrucke: Doz. Dr. Z. Bontschewa-Mladenowa Abt. für Chemie und Technologie der Halbleitermaterialien Chemisch-Technologische Hochschule Sofia-Darwenitza 57 Bulgarien